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ABSTRACT 

The degradation of signal processor performance in terms of 
loss of resolution (i.e., increased main lobe width and increased 
sidelobes) is analyzed and calculated for dispersive media.  The 
analysis gives insight into the distortion mechanisms and compares 
well with straightforward and precise numerical calculations.  The 
distortion of wideband signals is described for the following situations: 
Ionospheric dispersion (above plasma frequency), waveguide operated 
near cutoff, time dilation, and frequency dependent scattering cross 
section. 
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SECTION I 

SUMMARY OF DISTORTION ANALYSIS 

In many communications and radar systems the signals are 

distorted by reflection from moving targets or transmission through 

dispersive media such as the ionosphere or waveguide.  A general 

analysis of these effects is made and compared to straightforward 

but general numerical calculations which evaluate the distortion. 

The analysis and calculations are made for signals with a flat- 

amplitude band-limited spectrum such as linear FM pulse or an ideal 

bandpass impulse.  Quadratic phase distortion is given the most 

emphasis because it is produced by several common phenomena such as 

ionosphere dispersion, waveguide dispersion, and time dilation 

distortion. 

The effects of the distortion are determined in terms of radar 

performance.  This includes both detection capability (signal-to- 

noise ratio) , resolution capability (ability to distinguish nearby 

targets— main lobe width, and ability to distinguish targets of 

greatly different cross section—sidelobe level).  In a communications 

context parameters such as intersymbol interference and probability of 

error would be important.  Although these parameters are not discussed, 

it would be possible to easily relate them to the analysis presented. 

The purpose of this paper is to understand distortion in detail, 

to develop a technique applicable to a broad class of distortion 



mechanisms, and to determine the loss in signal-to-noise ratio, loss 

in range resolution (i.e., the loss in main lobe width and attainable 

sidelobelevel) that result from common problems such as ionosphere 

dispersion, waveguide dispersion, and time dilation. 

A general form of paired echo theory is used to relate the 

phase distortion to the waveform at the output of a filter matched to 

the uncorrupted signal.  Because the signal is assumed to be band- 

limited, it may be represented by a set of samples in the time 

domain.  For small phase errors these samples are simply related to the 

Fourier coefficients of the phase error function. 

Phase functions which have a strong periodic component generally 

introduce a large sidelobe.  Phase functions which are slowly varying 

and can therefore be represented by a few terms of a power series are 

more difficult to analyze.  The Fourier coefficients predict that 

there will be a considerable amount of sidelobes due to the phase 

distortion.  The Fourier coefficients are related in amplitude and 

phase in such a way that sidelobe weighting (e.g., Taylor weighting) 

significantly reduces the distortion sidelobes.  Therefore, the major 

effect of this type of phase function is to decrease the signal 

resolution by broadening the main lobe rather than by increasing the 

sidelobes . 

BACKGROUND 

The mathematics used to describe the ambiguity function for time 

signals is very similar to the mathematics for computing antenna 



pattern.  The concept of sidelobe weighting frequently used in signal 

processing context was originally conceived to improve antenna 

patterns.    Because antenna development has led the development 

of sophisticated signal processing techniques, many of the 

papers on the effects of phase distortion on ambiguity functions 

(antenna pattern) can be found in the literature on antenna 

*-u [2,3,4] theory.  ' ' ' 

More recently,papers on the processing of time signals have 

appeared.  An early paper by Klauder et al  gives a compre- 

hensive treatment of linear FM signal processing and includes a 

discussion of quadratic phase distortion.  A paper by Elliott "Pulse 

f6l Waveform Degradation Due to Dispersion in Waveguide"   treats 

quadratic phase distortion of sinusoidal pulses (uncoded).  Like 

Klauder, Elliott uses Fresnel integrals to evaluate the nonlinear 

phase effects. 

A paper by Brookner, "Effect of Ionosphere on Radar Waveforms", 

which relates the frequency dependent phase velocity of an electro- 

magnetic wave propagating through the ionosphere to a quadratic phase 

function, uses the results of Klauder and Elliott to define the 

effective bandwidth of the ionosphere. 

For many applications, such as high performance, long range. 

radar a more complete understanding of the distortion process and a 

more precise means of specifying the effect of the distortion is 

required.  Jn some applications it may be necessary to achieve 



sidelcbes  as   low as   -55  db  relative  to  the  main  lobe,   while 

simultaneously maintaining narrow main  lobe and high  signal-to-noise 

rat io. 



SECTION II 

GENERAL FOURIER DISTORTION ANALYSIS 

In this section the degradation of a signal transmitted through 

a linear filter is found simply and without error by Fourier trans- 

forming the product of the frequency characteristic of the distorting 

filter and the squared magnitude of the signal characteristic.  This 

relation has been recently pointed out by R.D. Haggarty who 

analyzed the effects of errors in the hardware implementation of a 

large time-bandwidth filter.  This procedure is a more general 

N calculation of the type often referred to as "paired echoes". 

The effects of sidelobe weighting are easily included by suitably 

modifying the filter characteristic. 

Consider the block diagram in Figure 1, where the following 

filters are represented: 

1. A linear time-invariant filter with impulse 

response x(t) , and frequency characteristic 

X(f) .  The filter output represents the 

transmitted waveform. 

2. A linear time-invariant filter with frequency 

characteristic,  1(f) .  This filter represents 

the distorting media. 

3. A filter matched to the transmitted signal.  Its 

frequency characteristic is therefore H(f) = X(f) , 
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Figure 1 .   Linear Filter Representation 



where the symbol  *  denotes a complex 

conjugate. 

Figure 1 also shows the same system with the matched filter and 

the distorting filter interchanged.  The output of the system,  y(t) 

(namely the received signal) is not affected by the interchange 

because linear time-invariant filter characteristics are commutative 

(i.e.,  1(f) X(f) = X*f) 1(f)). 

The observation is made that the phase of X(f) does not affect 

the output (received) signal y(t) . Defining the transform of y(t) 

as  Y(f)  the following relationship is shown: 

f 4 o^T 

y(t) = [  Y(f) e j2TTft df 

o 2 

y(t) 

f 
( 

£ 
c 

>  2 

X(f)   1(f)  H(f)   e   j2TTft 

W 
>"2 

o  2 

f 
c 

|X(f)|2   1(f)   e   j2nft  df 
W 

>~2 

df 

where  f   is the center frequency 
o 

and  W  is the bandwidth. 

(1) 



The output of a matched filter is often modified to reduce its 

sidelcbes by introducing another filter with response  W(f) .  A 

simple form of sidelobe weighting uses the function W(f) = 1 + cos~rr~ 

The output of the system with weighting,  W(f) , is given by 

z(t) = 
I 

f -H 
o 2 

|x(f)|2 1(f) W(f) e j2TTft df (2) 

If x(t)  is a complicated waveform (e.g., linear FM) a considerable 

amount of calculation time can be saved by using this expression.  For 

a large time bandwidth linear FM signal with a rectangular time 

envelope the following relationship approximately holds 

X(f) 

0 

o  2       o  2 

otherwise 

(3) 

Therefore instead of evaluating complicated Fresnel integrals to 

determine  y(t)  a simple integral needs to be evaluated 

z(t) = 1(f) W(f) e j2TTft df 

o 2 

(4) 

Note that for the commonly realized linearly dispersive filter systems 
Equation 3 is the ideal (error free) result. 



An understanding of distortion effects can be achieved by 

appealing to the sampling theorem or to a general paired echo theory 

Paired echo theory predicts  that if a signal \|i(t) is 

applied to a filter with the amplitude and phase spectra 

A(f) = 1 
(5) 

0(f) = b sin 2rrfc 

that   the  output,     Z(t)   ,   consists  of a   series  of  signals  differentially 

delayed. 

Z(t)   =  i|((t)  + J1(b1)[l|((t  + c)   -  f(t   -  c)] + JjCb^ttCt  +2c)  + f(t   -  2c)] 

+ J3(b  )[\|((t + 3c)   -  i|i(t  -  3c)] + + + (.6) 

The  Bessel   function,     J„(b  )   ,   can be approximated   for   small values   ci 

their  argument, 

b 

W w W * ° if    bx « 1 (7) 

The sampling theorem states that a function limited to a band W 

may be represented by the following series 

Zsm rrW(t - rr, 

y*. z— (>8> 
rrW(t - £) 



= I \ vt} 

where     yk -  y(-) 

(t)   = 
sin rrW(t  - -) 

TiW(t   -|) 
(9) 

Equation 4 can therefore be rewritten as 

= 4^ 
•oT j2TTfk 

W 
1(f) e      df 

f J£ 
o 2 

for the case without sidelobe weighting. 

If there is no distortion 

(10) 

1(f) = constant = 
W (ID 

then 

^o=1 

i i  o (12) 

yi = o 

On the other hand, if  1(f)  has a periodic amplitude component 

10 



1(f)  -I [1 + ax  sin 5(^)] (13) 

then 

(U) 

^o=1 

- + 
j^ y5 - + — 

jai 

yi =  0 i i  0,   5,   -5 

For   small periodic  phase  errors  the  problem reduces   to  this  case.     Let. 

IKOI -J 

a(£)   =  9(f)   = bl  sin ^|^ (15) 

then for  b  « 1 a Taylor series expansion of the exponential gives 

1(f) = i e j6(f) «g [1 + J9(f)] (16) 

The periodic phase error therefore reduces to the periodic amplitude 

error case by letting a = jb  .  The time function is the same as 

that predicted by the paired echo theory. 

11 



y(t) = -f 41 (t - £> + *(t) +jf(t + g)  (17) 

In many practical situations there may be both amplitude and 

phase sinusoidal modulation.  These may be related in such a way that 

paired echoes do not appear but only a series of echoes following 

the main lobe appear.  Multipath communications links or nonideal 

termination in cables or delay lines are examples in which this 

phenomenon is common. 

Side.lobe weighting can be easily incorporated into this analysis 

Appealing to paired echo theory the output from the periodic phase 

distorting filter given in Equation 15 can be found directly to be 

b b 

(t)— Y * (t " P + *(t) + 2 x(t + w>       (l8) 

where x(f)  is tne weighted undistorted output signal. 

The sampling theorem approach is also straightforward.  The 

ondistorted weighted output can be found by multiplication of the 

frequency characteristic shown in Equation 10 or convolving the 

transforms of their characteristics.  If w(t)  is the transform of 

W(f) , the weighting function,then 

X(t) = y(t)®w(t) (19) 

where Qy implies a convolution. 

12 



The distorted output is given by 

(t) "Y.yi  *i(t)®w(t> (20) 

)i Xi<t) 'L 
where j^CO " X(t - J) 

which reduces to Equation 18 by substitution for  y. 

^o=1 

y+5    2 

bl 
y-5 = T 

y. = 0        j O, 5, -5 

This discussion can be summarized by writing a general expression 

for the output time signal as a function of the Fourier series 

coefficients, \.   , of the phase distortion. 

To summarize, for small phase errors the unweighted and weighted 

distorted signals are related to the Fourier coefficients of the 

distortion.  Therefore, if 

|2TTfi\ 0(f) = Y,h sinl-g 

and 

13 



0(f) « 1 radian 

then the unweighted signal is 

y(t) - £\. t(t - i) (21) 

and the weighted signal is 

z(t) = ZXi x(t " w} (22) 

Note that Equation 21 is an expansion of the function y(t) 

on an orthogonal basis,  <|l(t) , and that Equation 22 is an expansion 

of the function,  z(t) , on a non-orthogonal basis,  x(c) •  Because 

z(t)  is a band-limited function, it can also be represented on an 

orthogonal basis also, 

z(t) = £V *(t " £) (23) 

The coefficients,  z. , are not trivially related to the Fourier series 

coefficients, X.   of the distortion, as is discussed in a latter 
l 

section.  The advantage of the non-orthogonal expansion (Equation 22) 

is that the coefficients are the Fourier series coefficients, \.   , 

s in x 
of the distortion function.  Because the  llf(t)  are   functions T x 

. ,_  J .      k . the unweighted output at some time  t = — is 

14 



y(|) = Xk (24) 

The. \Ji functions form an orthogonal set and in the unweighted case 

distortion sidelobes are simply related to the Fourier coefficients 

\.   . The weighted output does not have this property.  In general 

/•k\ , V *    f(k - i)1 
k      l       J 

(25) 

The )( functions are not orthogonal and therefore the actual sidelobes 

are a complicated function of the Fourier coefficients, \.   . 

To illustrate the importance of paired-echo theory the integral 

specifying the output signal (Equation 4) is numerically evaluated 

for a periodic phase distortion (Equation 13).  The calculation made 

without weighting and with 60 db Taylor weighting is shown in Figure 2. 

15 
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MAX   4>€ •• .1    RAD. • 6" 

Figure 2.   Output Time Signal Sinusoidal Phase Error 
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SECTION III 

QUADRATIC PHASE DISTORTION 

This section treats the analysis of the effect of small 

quadratic phase distortion.  A linear phase function delays a 

signal but does not introduce a distortion.  Quadratic phase functions 

can distort a signal significantly and are inherent in waveguide 

transmission, ionospheric propagation, and time dilation.  The analysis 

is made with the signal spectrum and phase distortion function defined 

in the frequency domain thus the distortion causes range (time) 

sidelobes.  The dual case of a time signal and time dependent phase 

function which introduces doppler (frequency) sidelobes is briefly 

discussed. 

The quadratic phase function (plotted in Figure 3) can be 

expressed conveniently as 

6(f) - *f (f - f )2        for  £  -^f<f +Wr     (26) 
./      o o  2       o  I w 

The maximum phase shift at the edge of the band is 

6 .  = 8(7) - I (27) max    2. 

The quadratic phase function (vs frequency) can also be 

characterized by the change in group delay across the band.  The group 

delay is defined 

17 



rg(f) = 

A 4<J) 
7TW 

" 

DISPERSIVE DELAY 

4> (f) 

A. 
T0T 2 

CM 
IO 
IO 

eJ 
<M 

QUADRATIC   PHASE 

Figure 3.   Dispersive Frequency Characteristic 
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T =A-f agja. (28) 
g    2TT df 

For quadratic phase the group delay is 

4$(f - f ) 
T - -  5—2- (29) 
8      rrW2 

The maximum group delay (see Figure 3) is often called the "dispersion" 

and is. 

T     - A = % (30) 
g max      nW 

The product of the total change in group delay across the band and 

bandwidth is defined as the time-bandwidth product and is 

WA = £* (31) 
TT 

Using Equation  1  the unweighted distorted  signal   is  found for  the  case 

where 

|l(f)|   =  const = J 

L 1(f) = 8(f) 

+2       l4ff 

/    , 1 j2TTfOt      T        W2 J2TTft    ,, ,„* y(t)  =^e Je eJ"df (32) 

W 
"2 

19 



For t.he remainder of the paper the center frequency is assumed zero 

for convenience; no generality is lost because of the use of complex 

* 
notation.   This integral cannot be exactly evaluated in closed form 

for an arbitrary value of  $  but can only be approximated by using 

tabulated Fresnel integrals.  However, if attention is restricted 

to small values of  *  an approximate analysis can be made.  Therefore, 

for $ « 1 radian 

j6(f)   1 |,   . 4$f2 
e      » y [1 + J ——\ 

The output signal in this case can be expressed as the sum of two 

signals, one representing the uncorrupted signal, the other the 

distortion. 

y(t) 

4^ 
1      ' 

~ w   , '  e  
j2TTft  df +    f 

_v 1                                W 
f                                 "2 

J*£ f2 e j2nft df        (34) 
W 

y(t) = yx(t) + y2(t) 

the first term is recognized as the transform of a rect function 

yl(t) =j^w?^= *(t) (35) 

Note that the narrow band assumption is made throughout. 

20 



and represents the desired output of the system if no distortion is 

encountered.  The second integral is recognized as 

(t) = -j *i —i-T y.(t) (36) y2vw   J 2    2 '1 
W  (2TT) 

d2 
where    y (t) - —•?  [y (t)] 

dt 

and is the result of the phase distortion. 

Evaluation of the derivatives yields 

•• /.-\ _ TTW  •  tl4.   2 2 sin nWt       ,..,,. 
y^t) = -T~ sin nWt T cos nWt + T        (37) 

t TTWtJ 

As discussed in the previous section, a convenient way of expressing 

this function is to evaluate it at t = — .  The resulting numbers are 

the Fourier coefficients of the phase function expansion and also the 

paired echoes of the received signal 

*2<s> • \ - * ^4- »8> 
it 00 

From this expression several important observations can be made: 

1. The Fourier coefficients are small relative 

to one because the —s- factor reduces them by 
TT 

about 20 db. 

2. The coefficients drop  off  as  the   square  of   1/k   . 
i 

21 



Thus,   the  tenth  coefficient   is 40 db  below  the 

first  coefficient. 

3. The.  sign  of  the  coefficients  alternate. 

4. The  phase  of  the distortion  coefficients   is 

± 90    relative   to  the desired  zero       order 

coefficient. 

5. For     k =  0    the   limit  may be  taken 

y2(W}   ~ 

An analysis of the dual situation can be made and is helpful in 

understanding the distortion mechanism.  For this dual case the 

quadratic phase becomes a function of time and causes sidelobes in 

the frequency domain.  Time dilation and errors common in active 

signal generators are distortions of this type. 

Let the distorted time signal be 

2 
j4$t 

2 
T T T 

r(t) = ± e for - ± < t < + ±- (39) 

The quantity^ $  is again the maximum quadratic phase shift, and occurs 

T 
at  t = ± r- .  In a manner almost identical to the previous analysis 

it can be shown that the output of a spectrum analyzer (matched filter) 

is given by 

R(f) = Rx(f) + R2(f) 

22 



R(f)   =  R  (f)   - -^ S— (4°) 
1 (2TT)  T       df 

u D   ^n       sin rrTf where    R^f)  = -—- 

The.  distortion coefficients   (paired echoes)   are  given by 

R2(f) • + ]2*t1/ (41) 
n I 

The calculations for frequency dependent phase distortion functions 

were checked by numerical computation.  An SDS-930 digital computer was 

used to evaluate the integral in Equation 1.  The calculation is 

performed for the following values of quadratic phase: 

i  = 0.0, 0.4, 1.0, 5.0, and 20.0 radians 

The. results are plotted in Figures 4 and 5.  Equation 38 predicted 

that for  $ • 1 radian the output time signal would be 

y(|) - -05 

y(|) - -02 

Figure 4 verifies this result almost exactly.  The computer calcula- 

o 0 
tion also verified that the phase alternated ± 90 relative to y(r;) w 

23 
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y(t) 0.8 

.* = 5 RADIANS OR 
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Figure 5.   Output Time Signal 
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SECTION IV 

EFFECTS OF SIDELOBE WEIGHTING 

The concept of increasing resolution by modifying the spectrum 

of a signal to minimize its sidelobe level while simultaneously main- 

taining high signal-to-noise ratio and narrow main lobe response has 

bsen well documented.  '   Although the Klauder paper  does 

present some useful data on the effects of weighting on quadratic 

phase distortion, there are several questions which remain unanswered. 

These include: 

1. Is there a simple model to predict the effect 

of weighting for quadratic phase distortion 

or for a wider class of distortion? 

2. Is it possible to achieve very low sidelobes 

(-40 to -60 db) for moderate quadratic phase 

distortion? 

3„  To what extent is the main lobe broadened by 

the combination of distortion and weighting; 

i.e., what is the loss in bandwidth. 

THEORETICAL DISCUSSION 

The answer to the first question is yes, as is shown in the 

following discussion.  The weighted undistorted time signal was given 

in Equation 19. 
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...   sin nWt    , . 
x(0 •    nWt  ® 

w(t) 

w 
(42) 

X(t) = j W(f) j2TTft., 
eJ   df 

W 
"2 

The distorted output time signal was given in Equation 22 

i=.oo ' 

(43) 

where \. are the Fourier series coefficients of the phase distortion 

function. 

But w(t) itself is bandlimited and can be represented by 

samples 

k ,,,,  V   sin TTW (t - — ) w(t) =2J
w

k      W (44) 

rV  (t - -) 

Therefore, the weighted distorted time signal is given by combining 

Equation 20 and 44 and performing the convolution 

00 00 

Z(t) = \ 
L 

\ 

k=-oo 
\w l-k 

sin TT Wt 

rr Wt 

•I  h 
sin riWt 
rWt 

= I     Z.   Y.(t) 
l=-co 

(45) 
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This equation is the same as Equation 23 and is the orthogonal expansion 

of z(t). 

The coefficients of the weighting curve, w are usually very 
K 

small for k larger than 10.  For example 35 db Taylor weighting can 

be achieved with a maximum k of 5.  For analytical convenience one 

plus cosine weighting is used (see Figure 6), where 

(f - f ) 
W(f) = 1 + cos 2n —— (46) 

i 1 
W-l=2      Wo = L     wl=2 

Approximately 30 db sidelobes can be achieved using this very simple 

form of sidelobe weighting.  This form of weighting as well as the 

Taylor weighting discussed later are monotonically decreasing functions. 

The analysis and the numerical results apply only to this class of 

weighting function. 

Using Equation 45 and 46 the samples of the weighted output 

signal are 

zt = l   \-i + h + l \wi (47) 

Using the Fourier coefficients for quadratic phase distortion in 

Equation 38 and this relationship, the expression for the samples 

of z(t) can be written as the sum of two functions; the first 

represents the undistorted output, the second the distortion 
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fo--=- V*S 

(I) 

«*' <i> 

I 

w 

I 

Figure 6.   Sidelobe Weighting Function 1 + Cosine 
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'I 
z  + z 
U   2t 

where 

v Ah\ 2 hd,l-\  + 60,i + 2 60,l-l 

and 

zu = + 
2 

11 -k 2,j$ 
2   2    2    2 

TT    -t (t-D (-W-D 

for i   >. 2 

(48) 

These calculations are best summarized in a table of the dis- 

tortion samples (Z„ ) for both the weighted and unweighted case.  Table 

I gives these results for the one plus cosine weighting and for $ = .25 

radian. 

Table I 

Samples Of Distorted Output 

hi 

I unweighted weighted 

2 -22  db -28  db 

3 -40  db -54 db 

5 
-48  db -76 db 

The distortion sidelobes are greatly attenuated by the sidelobe 

weighting because the distortion coefficients (\.) periodically change 

sign due to the (-1)  factor thus allowing the weighting function to 
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serve as a smoothing filter.* For large values of I  the samples drop 

4 2 
off as (1/-Q  rather than (1/-0  which occurs without weighting, 

Although the distortion sidelooes are attenuated by weighting 

it is now shown that the quadratic distortion can broaden the main 

lobe to an extent much greater than the broadening due to the 

weighting alone.  Thus there is a loss in resolution due to the 

quadratic phase distortion. 

An exact analysis of the broadening effect would be tedious 

and possibly unrewarding.  The following very approximate discussion 

is offered instead to give an intuitive understanding of the problem. 

The discussion relies on the analysis of linear FM signals by Key, 

[ 8l 
et al.   Using the concept of stationary phase, all of the authors 

were able to analytically transform a signal with a large quadratic 

phase modulation.  For signals with a large time bandwidth product 

the approximation is very good;for signals with a gaussian envelope 

the analysis is exact. 

For this discussion, therefore,it is assumed that a 55 db 

Taylor function is approximately gaussian.  The dependence of its 

transform on the amount of quadratic phase distortion is then 

determined. 

*Note:  In this case the advantage of the various expansions is utilized 
because the weighted functions, x> (Equation 22) are not orthogonal, 
whereas with weighting Y (Equation 21) are orthogonal. 
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In Reference 8 it is shown that the envelope |S(t) j a signal 

s(t) wiLh spectral magnitude 

|s(£>l=-£lB(£-£°)2 

AT 

and spectral phase 

(49) 

L s(f) = 8(f) = C(f - fo) , 2 (50) 

can be written as 

|s(t) 
1 

-ngt 

~7T2 

/   2         2x (0    + c ) 
- e   p +c (51) 

The constant 0 determines the degree of weighting and the 

constant c determines amount of quadratic phase.  Let 

8 = 

and 

c = 

B_ 

41 

w2 

then the resolution of the gaussian signal, s(t) , defined as half 

the pulse width at the -55 db level,is 

Res W 
55 

20 rr log e 

1 _ 2      ,-,1 
IT + [4$T 

B 
(52) 
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For small $ there is almost no loss in resolution, while for large 

the resolution is approximately 

Resolution 
55 • 16 

20 n B log e W (53) 

If, for example, B = 8 the weighting function is down 20 db at the 

2$ 
edge of the frequency band W and the -55 db pulse width is —. 

NUMERICAL CALCULATIONS 

The results of numerically computing the output time signal, 

z(t) for the case where a wideband flat spectrum input time signal is 

distorted by a quadratic phase function and Taylor weighting are 

presented in this section.  As noted earlier, a large time bandwidth 

linear FM pulse or an ideal bandpass impulse would have a spectrum 

such that 

|X(f)| = 1 
w        w 

for f  -?Sf Sf + £ o  2       o  2 (54) 

The integral in Equation 4 was evaluated using traditional numerical 

analysis techniques for the quadratic distortion given in Equation 26, 

The following table indicates the figure number, the degree 

of weighting, and the amount of quadratic phase. 

Table II 

Figure Numbers 

35 

0.0 0.2 0.4 0.8 1.6 3.0 6.0 

7 8 9 1    10 11 12 13 

14 - - 15 - - 16 
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The output time signal in Figures 7-16 are plotted with the 

peak of the main lobe normalized to one.  Besides the loss in signal- 

to-noise ratio due to Taylor weighting there is an additional loss 

in signal-to-noise ratio due to the phase distortion,.  The quadratic 

phase distortion effectively attenuates the signal level because the 

signal energy is dispersed.  This loss is plotted in Figure 17 A, B 

for no weighting and 55 db and 35 db Taylor weighting. 

From the plots of the output time signal, it can be seen that 

there is a loss in signal resolution.  This effect is measured in 

two ways.  It is asserted that the most meaningful measure of 

resolution is the width of the main lobe at a level equal to the 

largest sidelobe.  The distance from the center of the main lobe 

to that point is plotted in Figure 18 for the cases where the signal 

is weighted by a 55 db or 35 db Taylor function and where it is 

unweighted.  The more conventional, but less meaningful, 3 db resolu- 

tion is plotted in Figure 19 for the case of 55 db Taylor weighting 

and no weighting.  The curve for the loss in resolution measured at 

the 3 db level is similar to the curve predicted by Equation 52. 

The curve in Figure 18 has different characteristics because of the 

complex interactions of the near-in sidelobes. 
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Figure 17a.   Attenuation vs Quadratic Phase Distortion 
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Figure 17b.   Attenuation vs Quadratic Phase Distortion 
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Figure 18.    Resolution vs Quadratic Phase Distortion 
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SECTION V 

APPLICATION TO IONOSPHERIC DISPERSION 

The group delay of a signal propagating through the ionosphere 

is a function of frequency, i.e., its phase characteristics are non- 

linear.  Using a simple electromagnetic model for the propagation, a 

wave equation can be found.  It indicates that the phase -vs- frequency 

characteristic has a large quadratic term, but that higher-order power 

series terms are unimportant.  Thus, the study of ionospheric distor- 

tion is reduced to determining the functional dependence of  *  on the 

physical parameters of the ionosphere.  The analysis only considers 

propagation above plasma frequency (VHF to X-band).  For this band the 

quadratic phase is proportional to the integrated electron density. 

There are many papers and texts dealing with ionospheric propagation; 

see, for example, Reference 9.  Because there are so many, only 

the results will be given. 

An extension of a propagation analysis to include gross inhomo- 

geneities, dense electron environment and time-varying effects are 

well beyond the scope of this paper.  The application of this study to 

propagation below the plasma frequency (HF), while a very interesting 

area, has not been included. 

The ionosphere consists of free electrons; therefore, it affects 

the propagation of electromagnetic energy.  By considering the number 

of these electrons, their charge and mass and by making simplifying 
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assumptions about their interactions, a wave equation can be derived. 

The solutions of the wave equation are in such a form that it is 

possible to relate the input and output signals of the media by a 

linear relationship.  The linear relationship is a convolution of 

the input time signal and the impulse response of the media. 

It is assumed that the free electrons in the ionosphere do 

not interact and they they are statically and homogeneously distributed 

throughout a local region described by the wave equation.  Using 

Maxwell's equations and the force on an electron, the following wave 

equation can be derived: 

2       2 
d E(z)   UJ_ 

dz      c 

2 
N e 

e muo 

E(z) = 0 <55) 

where E(z)     is the electromagnetic field 

z       is distance 

oj = 2nf is frequency in radians/sec 

e       is electron charge 

m       is electron mass 

N       is electron density 

c       is speed of light . 

Solving the wave equation and identifying the equivalent filter 

characteristic it is found that 

|l(f)| = 1     z (56) 

L  Kf) = 0(f) -/i"- - 
o 
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where Z  is the total path length 

N  is assumed to vary slowly with Z 

For frequencies well above the plasma frequency this equation 

may be expanded in a binomial series and only terms below second order 

retained.  Thus, if 

f » 9 ST 
Z (57) 

0(f) m   " —7        N(z)dz 
C       CI  J 

0 

The first term represents the natural delay T = Z/c .  The second term 

represents a distortion.  Expansion of this term in a Taylor series 

reveals that the cubic and higher order terms are negligible.  The 

first order term is a delay which causes range errors but does not 

distort the pulse.  The second order term can be written in the general 

quadratic form given in Equation 26, where 

W 2 

8lTT[j4 
 o 
8 c f 

°   0 

N(z)dz (58) 

W 
For a 10 percent bandwidth signal — = .1  the expression is 

o 

-9 Z 

10 
f o 

N(z)dz (59) 

0 

Table III gives  *  for an integrated electron density which 

is (1) a typical worst case density, and (2) a typical median density. 
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This ionospheric data was extracted from Reference 10, but because 

the electron density is a strong function of many factors, such as 

sun spot number, elevation angle, and time of day, the reader must be 

careful in interpreting exactly what is meant by a worst case or median 

ionosphere. 

Table III 

MAX Quadratic Phase Shift ($ In Radians) 
For 10 Percent Bandwidth 

§ for Two-Way Integrated Electron Density 

Band o 4 x 10  e/m 2 x 10  e/m 

L 1 Gc 4.0 {Figure 12)      0.2JFigure 8) 

C. 5 Gc 0.08 {Figure lo)      0.04 

X 10  Gc 0.04 {Figure 9)        0.02 

Note:  The figure numbers refer to the results of the numerical 
calculations made for the closest value of quadratic phase 

using 55 db weighting. 
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SECTION VI 

APPLICATION TO OTHER PROBLEMS 

There are several problem areas which either have quadratic 

phase distortion or closely related distortion which can be analyzed 

directly by a simple modification of the previous work.  The problems 

discussed in this section are: 

1. Time Dilation 

2. Waveguide Dispersion-Quadratic Effects 

3. Frequency-Dependent Radar Cross-Section 

4. Waveguide — Cubic Phase Function Analysis. 

TIME DILATION 

A constant velocity target distorts a signal in a manner ref- 

erred to as "time dilation".  The distortion is a rescaling of the time 

axis, and therefore also the frequency axis.  The first order effect 

is a shifting of the center frequency of the signal — the common 

"doppler effect".  One of the second-order effects is a change in the 

signal bandwidth; however, this distortion results in a loss in signal- 

to-noise ratio which is usually insignificant.  For phase modulated 

signals the time dilation distorts the signal in a manner similar to 

a dispersive filter.  A linear FM signal — a type of phase-modulated 

signal — is distorted by the introduction of additional quadratic phase 

(i.e., slope of linear FM changes).  For large time bandwidth signals 

the distortion can result in very significant loss of signal-to-noise 
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ratio and resolution. 

The amount of quadratic phase as a function of target velocity 

and signal parameters is calculated to determine the degree of the 

distortion and the accuracy that is required in measuring the target 

velocity to apply corrective techniques. 

An accelerating target introduces a quadratic phase distortion 

on any signal.  Therefore, its effects are also discussed in this 

section. 

Assume a received FM signal of duration T : 

s(t) = sin [^ (t - a(t))2+ uu (t - a(t))]    (60) 
1 c 

The delay  cc(t)  is a time-dependent delay increment due to a single 

moving target: 

2R    •    " 2 
a(t) = S. + 2Rt + Rt_ 

c    c    c 

The receiver mixes the received signal with a local oscillator  (LO) 

with the same characteristics as the transmitted signal. 

L0(t) = sin [^ t2 + uu t]     for - | < t < | (62) 
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The low pass output of the mixing operation is 

2     3     4 
r(t) = sin(a  + at + at  + at  + at ) (63) 

The     a       term  is   simply  a   phase   shift which   is   ignored   in  the   follow- 

ing  discussion.     The     a       term is 

2R uu 4TTW R 8TTW R R 
 c   ,   o       o ,,. . 

Thus, the  a   term contains both target range and range-rate informa- 

tion (usual range-doppler coupling).  The last term (Equation 64) 

is ignored because it represents an error which is usually very small. 

The significant distortion is caused by the quadratic term a  . 

This term has value 

UJ R       /TTI *       4TTWR R 
c      ,   4TTWR       o^ 

a„  =  -   H —  H ~— (65) 2 c cT 2_ v 

c  T 

For most   linear  FM  signals   the     R     term dominates.     The maximum quad- 

ratic   phase    $     is  given by 

2 
, rTn TTWTR „,. 
$   = a-L-jjJ     =   C66) 

For a time-bandwidth product of a million (say T = 1 millisecond, 

Q 

W = 1 GHz ,  c = 3 x 10 m/sec). 

$ = 10"2 R (67) 
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Target velocities as large as 1,000  meters/sec are not uncom- 

mon, therefore it is possible for $  to be as large as 10 radians 

(see Figure 5 for an unweighted distorted signal with $ = 20 — there 

are no plots of weighted signals with so much distortion).  Even a 

target velocity which is an order of magnitude less (100  meters/sec) 

would produce 1.0 radians of quadratic phase (see Figure 11 for 

weighted distorted signal).  If the quadratic phase is to be below .2 

radian (considering loss in resolution, see Figure 8) the range rate 

R must be measured with an accuracy of better than  20 meters/sec. 

For most applications the target acceleration does not introduce 

significant distortion.  For example, for a millisecond X-band signal, 

2 
the acceleration must be known within 2,000 meters/sec .  However, if 

a signal is to be coherently integrated for about one second, the 

2 
acceleration must be known within .002 meters/sec — a stringent require- 

ment. 

WAVEGUIDE DISPERSION - QUADRATIC EFFECTS 

The phase characteristic of waveguide has almost the same func- 

tional form as the dispersive ionosphere characteristic.  If the iono- 

sphere electron density is a constant, the relationships are identical. 

Waveguide, however, has a much higher, cut-off frequency than the 

ionosphere.  For example, typical X-band waveguide may cut off at 6 GHz 

while the ionosphere may cut off as low as 10 MHz.  The quadratic phase 

function for waveguide is evaluated in this section; an analysis which 

includes cubic phase effects is given later in this Section. 
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The phase characteristic of waveguide can be written as 

= —yi-if, 
f 

2 

(68) 

The magnitude of the quadratic term of a Taylor series expansion is 

found by evaluating the second derivative of the phase function at the 

signal center frequency  f  .  The maximum quadratic phase  $  is found 

to be 

2  2 
, _    n»ZX 
$ =    —m 5—TTO (69) 

4f c(l - X^)  ' 
o 

where X = f /f  = relative cut-off frequency, 
c  o 

The "dispersion" (total change in group delay across the band) 

is given by 

o   c(l - X ) 

Thus, the dispersion is a linear function of the percent bandwidth 

and the waveguide length, but is a complicated function of the rela- 

tive cut-off frequency.  Because the dispersion is independent of 

center frequency,  f  , the distortion effects get worse as  f 

W 
increases if the percent bandwidth is held fixed  (—) .  For 

o 
example, a nanosecond of dispersion is insignificant in an L-band 

system with 100 Mc bandwidth but is very important in an X-band system 
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with 1000 Mc bandwidth.  To relate the distortion to the previous 

results, a table is provided giving values of  $  for various lengths 

and relative cut-off frequencies.  The information in the table 

arbitrarily assumes a center frequency of 10 GHz and a bandwidth of 

1 GHz.  See Table II in Section IV for the figure numbers of the 

graphs showing the distorted signals. 

Table IV 

Quadratic Waveguide Dispersion 

$  in Radians for f  = 
0 

10 GHz, W = = 1 GHz 

f 
c 

fo   .1 Z .5 .6 .7 

1 meter .025 .1 .15 .35 

10 meters .25 1.0 1.5 3.5 

50 meters 1.25 5.0 7.5 17.5 

From this data it can be seen that for even a modest length of wave- 

guide serious distortion can occur for standard waveguide (e.g., 

X-band waveguide WR 112 has  f =5.26 GHz). 
c 

FREQUENCY-DEPENDENT RADAR CROSS-SECTION 

An example of non-harmonic amplitude distortion is frequency- 

dependent radar cross-section of various types of scatterers.  Using 

the geometric theory of diffraction, the radar return from a plate 

scatterer can be calculated as if the signal had passed through a 

filter with the following frequency characteristic 
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|s(f)| = 2nf 

L  S(f) = 0(f) = 0 (71) 

Other types of scatterers such as cylinders, edges and points also 

have similar, but different, frequency characteristics. 

The analysis procedure discussed in Section III for a quadratic 

phase function is applicable to such a problem.  More important, 

however, the sidelobe weighting analysis of Section IV shows that the 

major effect of this distortion is the loss of resolution because the 

main lobe is widened. 

Following the analysis pattern almost directly in Equations 

32 through 38, the Fourier coefficients of the signal \.     and 

therefore the paired echo coefficients of the output time signal are 

found to be 

y(w-) = \ = 

f 4 
o 2 

f -S 
o 2 

S(f) e J2gii df (72) 

4)  m h  . [tftti + Kt)]    i 
*   =W 

=i ,w_^ (-D
i+1 

=j(r~) f '    i 
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Three conclusions can be drawn from the expression for the 

paired echo coefficients: 

1. The effect is proportional to the percent bandwidth. 

2. The Fourier coefficients drop off inversely as their 

number. 

3. The coefficients alternate in sign so that weighting 

will reduce their effect, but not to the same degree 

as for a quadratic phase function. 

In practice, the percent bandwidth is usually less than one, therefore 

this type of distortion is not as important as the quadratic phase 

distortion which could become severe (see waveguide dispersion) . 

WAVEGUIDE - CUBIC PHASE ANALYSIS 

Dispersive media, such as waveguide when operated near the 

cut-off frequency, introduces phase distortions which may include 

non-negligible terms of higher than second order.  VHF propagation 

through the ionosphere could also have this characteristic.  In 

this section the coefficient of the cubic phase error term for wave- 

guide is calculated and its effect compared to the effect of the 

quadratic term.  Because it is possible to easily correct for quad- 

ratic distortion in a linear FM system (by a flexible slope) the 

cubic term may be a limiting factor in determining the system 

resolution.  Therefore, the loss in resolution is a function of the 

cubic term in certain applications. 

The dispersive waveguide characteristic is given by 
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0(f) -zf-fT- (fc/f>2 

The cubic term of a Taylor series expansion is found by taking the 

third derivative of 0(f)  and evaluating it at the center frequency 

f  .  Thus o 

where 

f2    f3 
c„f    c~f 

0(f) » CQ + C][f + -yp- + -JT- 

 6TTZX
2 

C3 =    I     TTJl (74) 
c f  (1 - X ) 

o 

and X = f /f 
c  o 

The quadratic analysis for small phase errors, given in 

Section III, is easily extended to include cubic phase errors.  The 

output time signal  y(t)  is found to be 

y(t) = so(t) + s3(t) 

n /_\  sin nWt 
where S^t) =  ^ (75) 

1 C3 d3so(t) 
and S (t) = ——r j rr  \— 

3    [2n]J J-  dt3 
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Evaluating  the   third  derivative  at     t   =  -L/W    gives 

S3&   " 

jC3 W3(-l)^ 

(2TT)     3! 

6 2 

7"^ (76) 

Only the term of  S„(-t/W)  which drops off as  1/-L   is truly a cubic 

distortion.  The other portion which drops off as l/L    corresponds to 

a pure envelope delay or a linear phase distortion.  The amount of the 

pure envelope delay is proportional to the slope of a straight line 

passing through  0(f)  at both edges of the band (see Figure 20). 

That is 

Tc = W [^fo + 2 J " ^[fc 

Thus, the cubic distortion can be written 

S3$ - S3^ + S^] 

where 

W 
J (77) 

(78) 

.      .    Jc.wVl)*' 
s'[J] - s3[Jj + --4  

(2TT) 3! 

The following table gives the magnitude of S'(-t/W)  in db per meter 

for various cut-off frequencies. 

Table V 

Magnitude of Cubic Phase Fourier Coefficients 

f 
I 

c 
f o 

.5 .7 .8 .9 

1 -57 db -50 db -40 db -24 db 

3 -76 db -79 db -68 db -52 db 

5 -99 db -92 db -82 db -66 db 
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•«! 

T = ENVELOPE DELAY 
=- SLOPE 

= AVE   [Tf(f)] 

f-f. 

Tq (f  )  = 
I d <^> t f 1 

2TT d   f 

|N 
I 

l< 

Figure 20.   Envelope Delay Definition 
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To assess the relative importance of third-order terms for 

dispersive waveguide it must be compared with the effect of the quad- 

ratic term.  From Equation 69, the max quadratic phase in a band  W 

is found to be 

,,2 „  2 

* -"" z x     : 3/2 
4 f  c[l - X ] 

o        J 

Sidelobes due to quadratic distortion (see Equation 38) may be expressed 

TT  -0 

Comparing the first sidelobe due to the cubic distortion,  S~(—) , 

with the first sidelobe due to quadratic distortion \     , 

^1    W      3 
= ("TO  ^—^T (81) 

Sj(£)   fo 2n(l - X2) 

Thus, even with X = .80  (i.e.,  f = .80 f )  the effect of the 
c       o 

cubic, term is much smaller. 

Although the cubic phase distortion is negligible, relative to 

the quadratic phase distortion for waveguide, there may be situations 

for which this is not the case.  For example, if the quadratic phase 

is accounted for by the signal processor the cubic term would limit 

performance. 
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SECTION VII 

SUMMARY 

The paper has emphasized a straightforward method of computing 

a distorted matched filter output for band-limited signals.  This 

method is certainly not new but has somehow been overlooked with the 

advent of complicated phase-coded signals.  By observing that phase 

coding is cancelled in the matched filter receiver, the required cal- 

culation can be written as a simple Fourier transform. 

The principal of paired echoes is also well known.  If there is 

a sinusoidal phase error in the band of interest then a series of 

error sidelobes will be introduced.  If the phase error is less than 

one radian only a pair of error sidelobes are generated which are 

amplitude symetric about the mainlobe.  If there are N  cycles of 

sinusoidal phase error then the paired echoes are N resolution cells 

away from the mainlobe. 

By Fourier theory it is possible to expand an arbitrary phase 

error function into a Fourier series (a sum of sines and cosines). 

Since the matched filters are assumed linear,the distorted output 

signal is a sum of paired echoes, the kth echo being associated with 

the kth Fourier coefficient. 

If a rectangular envelope (in the frequency domain) unweighted 

signal is considered, the sample of its output at time k/W  is the 

kth paired echo. 
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Thus, for an unweighted, distorted signal the output is directly 

related to the Fourier coefficients of the distortion function. 

A weighted signal, on the other hand, cannot be expressed in 

this way.  The distorted weighted output time signal is represented 

by a sum of paired echoes, each a delayed replica of the undistorted 

weighted signal; however, the weighted echoes are not orthogonal. 

Thus, samples of the output signal are a more complicated function of 

the Fourier coefficients of the distortion function.  It was found that 

the kth sample was a convolution of the Fourier coefficients of the 

distortion function and the Fourier coefficients of the weighting 

function. 

Therefore, to calculate the distortion of some filter, not only 

must the individual Fourier coefficients of the distorting filter be 

found, but their structure and relationship must be examined. 

The quadratic phase dispersion frequently encountered in 

practice is analyzed with the Fourier theory.  It was found that the 

error coefficients could be quite large for modest quadratic distor- 

tion, but they had a very special character.  The coefficients alter- 

nated in sign, dropped off as the square of their number, and were 

90° out of phase with respect to the mainlobe.  This information is 

sufficient to predict that most of the sidelobes due to quadratic 

phase dispersion would be removed by sidelobe weighting.  The reduc- 

tion in the effect of the Fourier coefficients due to weighting is not 

expected to occur near the origin.  In fact, an argument using 
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stationary phase to approximate the Fourier integral predicts that the 

mainlobe will widen.   Numerical results did in fact verify that the 

error sidelobes were not significant but that the mainlobe width grows 

considerably with increasing quadratic phase.  This result is easily 

extended to include small amplitude and phase errors which are 

represented as a power series. 

00 

0(f) - L \ <f - Vk 
k=2 

This class of error will have adjacent Fourier coefficients which will 

interact upon sidelobe weighting resulting in a reduction of their 

effect.  As noted in the text, these coefficients tend to broaden the 

mainlobe. 

These ideas can be summarized by noting that phase (or amplitude) 

errors which are easily represented by a few terms of a Fourier series, 

i-e., basically sinusoidal, will generally degrade the sidelobe level, 

while phase errors which are easily represented by a few terms of a 

power series will generally widen the mainlobe.  Most distortions fall 

into one of these categories; therefore, the application of these 

results should be relatively straightforward.  To show this, the 

outline of different types of distortion are presented in the text. 

These include  frequency-dependent scattering and time dilation. 

67 



REFERENCES 

1. T. T. Taylor, "Design of Line-Source Antennas for Narrow Beam- 
width and Low Sidelobes," IRE Trans. Antennas and Propagation, 
January 1955, pp. 16-28. 

2. Samuel Silver (Editor), Microwave Antenna Theory and Design, 
Dover Publications, New York, 1965. 

3. M. Leichter, "Beam Pointing Errors on Long Line Sources," IRE 
Trans, on Antennas and Propagation, Vol. AP-8, May 1960, 
pp. 268-275. 

4. R. N. Bracewell, "Tolerance Theory of Large Antennas," IRE 
Trans, on Antennas and Propagation, Vol. AP-9, January 1961, 
pp. 49 - 58. 

5. J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, 
"The Theory and Design of Chirp Radars," B.S.T.J., Vol. XXXIX, 
No. 4, July 1960, pp. 745 - 808. 

6. R. S. Elliot, "Pulsed Waveform Degradation Due to Dispersion in 
Waveguide," IRE Trans, on Microwave Theory and Techniques, 
October 1957, pp. 254-257. 

7. Eli Brookner, "Effect of Ionosphere on Radar Waveforms," 
Journal of the Franklin Institute, Vol. 280, No. 1, July 1965, 
pp. 1-22. 

8. E. L. Key, E. N. Fowle, R. D. Haggarty, "A Method of Designing 
Signals of Large Time-Bandwidth Product," IRE National Conven- 
tion Record, March 1961. 

9. Ionospheric Radio Propagation, National Bureau of Standards 
Monograph 80, April 1965. 

10.    R. S. Lawrence and D. Jane Pasakony, "The Total Electron Content 
of the Ionosphere at Middle Latitudes near the Peak of the Solar 
Cycle," J. Geophys. Res., Vol. 68, No. 7, April 1963, pp. 
1889-1898. 

68 



St'i'untv Classificati 

DOCUMENT CONTROL DATA -R&D 
,y<'iunfv classification ol title,  hotly ol nhstrm-t uml indexing annolmion mu-.t lie entered when the overall report i •• cUissllled) 

IN* TING    AC 1 I VI  I V   [Corporate  author) 12a.   REPOB1    SECURITY    CLA'iSIl   ir» 

The MITRE Corporation 
Bedford, Massachusetts 

UNCLASSIFIED 
26.    GROUP 

N/A 
3     RFI'OHI    TITLE 

A STRAIGHTFORWARD GENERAL ANALYSIS OF SIGNAL DISTORTION WITH 
APPLICATIONS TO WIDEBAND IONOSPHERIC DISPERSION 

4    I'FSCRIPTIVE  NOTES (Type ol report and inclusive dates) 

N/A 
S    AUTHORiS) (First name,  middle initial,  last name) 

J.  T.  Lynch 

6     REPORT   DATE 

March 1968 
7a.    TOTAL   NO.   OF   PAGES 

74 
lb.    NO     OF    REF5 

10 
8fl.    CONTRACT   OR   GRANT   NO. 

AF 19(628)-5165 
b.    PROJECT   NO. 

7150 

9a.   ORIGINATOR'S   REPORT   NUMBERISI 

ESD-TR-67-623 

9b.   OTHER   REPORT   N O(S) (Any other numbers   that may  be as signed 
this report) 

MTR-444 
DISTRIBUTION   STATEMENT 

This document has been approved for public release and sale; its distribution is 
unlimited. 

II      SUPPLEMENTARY   NOTES 

N/A 

12.   SPONSORING   MILITARY    ACTIVITY 

Development Engineering Division,  Elec- 
tronic Systems Division,  L. G. Hanscom 
Field,  Bedford, Massachusetts  

13      ABSTRACT 

The degradation of signal processor performance in terms of loss of resolution 
(i. e. , increased main lobe width and increased sidelobes) is analyzed and calculated 
for dispersive media.    The analysis gives insight into the distortion mechanisms and 
compares well with straightforward and precise numerical calculations.    The distor- 
tion of wideband signals is described for the following situations:  Ionospheric 
dispersion (above plasma frequency), waveguide operated near cutoff, time dilation, 
and frequency dependent scattering cross section. 

DD,FN°oRvMe51473 
Security Classification 



Koi'iifitt  iMrtssifii at ion 

KEY    WORDS 

SIGNAL DISTORTION 

PULSE COMPRESSION 

WIDEBAND SYSTEMS 

HIGH RESOLUTION 

IONOSPHERIC DISPERSION 

TIME DILATION 

WIDEBAND DISPERSION 

I L E W T 

Security Classification 


